CONTENTS

VEGETABLE CROPS CALENDAR

COMMERCIAL VEGETABLES
Watermelon Variety Evaluation
New Tolerances for Sethoxydim (Poast)
Overview of Alternative Greenhouse and Outdoor Production Systems at Suwannee Valley Research and Education Center
Round White Potato Variety Trial Results, 1998, Hastings, FL

VEGETABLE GARDENING
Cutting Potato Seed - pieces for garden planting

Note: Anyone is free to use the information in this newsletter. Whenever possible, please give credit to the authors. The purpose of trade names in this publication is solely for the purpose of providing information and does not necessarily constitute a recommendation of the product.
Vegetable Crops Calendar

Commercial Vegetables

Watermelon Variety Evaluation

Watermelon varieties were evaluated in the spring 1998 season at the Gulf Coast Research and Education Center, Bradenton. The trials included 36 diploid entries and 21 triploid (Seedless) entries.

The EauGallie fine sand was prepared in late January by incorporation of 0-1.2-0 lb N-P2O5-K2O per 100 linear bed foot (lbf). Beds were formed and fumigated with methyl bromide: chloropicrin, 67:33 at 2.3 lb/100 lbf. Band fertilizer was applied in shallow grooves on the bed shoulders at 3.1-0-4.3 lb N-P2O5-K2O/100 lbf after the beds were pressed and before application of the black polyethylene mulch. The total fertilizer applied was equivalent to 148-60-206 lb N-P2O5-K2O/acre. The final beds were 32 in. wide and 8 in. high and were spaced on 9ft centers, with four beds between seepage irrigation/drainage ditches which were on 41 ft centers. The diploid watermelons were planted in rows adjacent to the ditches and also served as pollinizers for triploid watermelons that were being evaluated in the two center beds of each land.

Diploid watermelon seeds were planted on 13-17 February in holes punched in the polyethylene mulch at 3 ft in-row spacing. Seedlings were thinned at the two true-leaf stage to one per hole. Triploid watermelon transplants were field planted on 26 February. The 30-ft long plots had ten plants each and were replicated three times in a randomized complete-block design. Weed control in row middles was accomplished by cultivation and application of paraquat. Plant stand counts recorded just before vines grew together showed no significant difference among plots. Pesticides were applied as needed for control of silverleaf whitefly (endosulfan), gummy stem blight (chlorothalonil, metaxyl-chlorothalonil, alliace, and maneb) bacterial fruit blotch (fixed copper), and worms (Bacillus thuringiensis and methomyl).

Watermelons were harvested from late May to mid-June. Marketable (U.S. No. 1 or better) fruit according to U.S. Standards for Grades of Watermelons were separated from culls and counted and weighed individually. Triploid fruit 8 lbs and larger and diploid fruit 12 lbs and larger were assumed to be marketable. Tetraploid fruit, where they occurred, were not included in the marketable category because they are not seedless. Soluble solids (a measure of sweetness) were determined with a hand-held refractometer on at least six fruit from each entry at each harvest. The resulting data were subjected to analysis of variance and mean separation was by Duncan's multiple range test.

Early diploid watermelon yields, based on the first of two harvests, ranged from 0 for 'Regency' to 474 cwt/acre for 'Royal Flush'. Twenty-three other entries had early yields similar to those of 'Royal Flush'. Average fruit weight ranged from 16.6 lbs for 'Bravo' to 28.4 lbs for 'Starbrite'. Soluble solids concentration varied from 9.7% for 'Verde Grande' to 12.2% for PS 36694.

Total yields varied from 484 cwt/acre for 'Bravo' to 896 cwt/acre for 'Stars-N-Stripes'. Twenty-six other entries had yields statistically similar to those of 'Stars-N-Stripes'. Average fruit weight over the entire season ranged from 17.7 lbs for 'Bravo' to 28.0 lbs for 'Starbrite'. 'Huck Finn' average fruit weight was 27.7 lbs and a number of other entries had substantial average fruit weights. Soluble solids concentrations ranged from 10.1% for 'Verde Grande' to 12.4% for 'Regency'. Seasonal average soluble solids for all entries exceeded the 10% specified for optional use to designate very good internal quality in the U.S. Standards for Grades of Watermelons.

Diploid watermelon variety evaluations have been conducted at this location each spring season since 1991. The highest yields ranged from 439 to 484 cwt/acre. The highest soluble solids concentrations ranged from 9.7% for 'Verde Grande' to 12.2% for PS 36694.
spring 1998, the highest yield was 896 cwt/acre which was considerably greater than the 7-year average yield of 690 cwt/acre.

Yields are a function of fruit number and fruit weight. In spring 1998, high yields were related to fruit weight. The highest individual fruit weight ever obtained in these trials was produced this year by 'Starbrite' at 49.2 lbs. Several other entries, including HSR 2590, 'Huck Finn', 'Pinata' (small seed), RWM 8036, 'Stars-N-Stripes', 'Sultan', 'Summer Flavor 800', 'Summer Flavor 810', SWM 7201 and 'Verde Grande' produced fruit exceeding 40 lbs each.

Based on this and previous trials, the following Allsweet and blocky Crimson Sweet type diploid varieties are expected to perform well in Florida: 'Athens', 'Carnival', 'Fiesta', 'Mardi Gras', 'Regency', 'Royal Flush', 'Royal Star', 'Royal Sweet', 'Sangria', 'Starbrite', 'Stars-N-Stripes' and 'Summer Flavor 500'. Other varieties may perform equally well on some farms.

Early triploid watermelon yield, as represented by the first of two harvests, varied from 273 cwt/acre for 'Sterling' to 607 cwt/acre for 'Tri-X-Shadow'. Eleven other entries had yields similar to those of 'Tri-X-Shadow' and 17 other entries had early yields statistically similar to 'Sterling'. Average fruit weights at the first harvest ranged from 13.2 lbs for HMX 7928 to 20.9 lbs for 'Sterling'. Soluble solids concentrations varied from 11.6% in RWM 8073 to 13.8% in 'Tri-X-Carousel' at the first harvest.

Total yields ranged from 498 cwt/acre for 'Sterling' to 846 cwt/acre for 'Millionaire'. Only three entries produced yields significantly lower than 'Millionaire'. Average fruit weight for the entire season varied from 12.7 lbs for HMX 7928 to 18.8 lbs for 'Sterling'. Soluble solids concentrations varied from 11.9% for FS 4502 to 13.3% for 'Tri-X-Carousel'. Accordingly, soluble solids in all entries far exceeded the 10% specified for optional use in the U.S. Standards for Grades of Watermelons to describe very good internal quality.

Triploid watermelon variety trials have been conducted at this location each spring season since 1988. The highest yields ranged from 537 cwt/acre in 1983 to 1161 cwt/acre in 1993. In spring 1998, the highest yield was 846 cwt/acre which was somewhat more than the 763 cwt/acre average high yield of the previous ten years.

Based on results of this and previous trials, triploid hybrids, in alphabetical order, that should perform well in Florida include 'Constitution', 'Crimson Trio', 'Freedom', 'Genesis', 'King of Hearts', 'Millionaire', 'Revere', 'Scarlet Trio', 'Summersweet 5244', 'Summersweet 5544', and 'Tri-X-313'. Other varieties may perform well on individual farms.

Those readers needing more details on these trials should request Research Reports BRA-1998-8 and BRA-1998-9, from the author.

(Maynard, Vegetarian 99-2)

New Tolerances for Sethoxydim (Poast)

Tolerances have been established for the herbicide sethoxydim (Poast) on the leafy vegetable crop group and the tuberous and corn vegetable subgroup. The establishment of the group and subgroup tolerances will extend tolerances to include all the commodities in that group.

The label for use has not yet been issued, but will probably be forthcoming. Look for it in the future. The tolerances established will extend to the following commodities:

- **Leafy vegetable group.**

 - Amaranth (leafy amaranth, Chinese spinach, tompale)
 - Arugula (Roquette)
 - Cardoon
 - Celery (previously registered)
 - Chinese celery
 - Celtuce
 - Chervil
 - Chrysanthemum, edible-leaved
 - Chrysanthemum, garland
 - Cilantro
 - Corn salad
 - Cress, garden and upland
 - Dandelion
 - Dock (sorrel)
 - Endive (Escarole) previously registered
 - Fennel, Florence (firenchio)
 - Lettuce, head and leaf (previously registered)
 - Orach
 - Parsley
 - Purslane, garden and winter
 - Radicchio (red chicory)
 - Rhubarb (previously registered)
 - Spinach (previously registered)
 - Swiss chard, New Zealand
Overview of Alternative Greenhouse and Outdoor Production Systems at Suwannee Valley Research and Education Center

There are four hydroponic systems being demonstrated at the Center, including:

1) Lay-Flat Bags - Filled with perlite, represent over 90% commercial greenhouse hydroponic production in Florida.

2) The VerZontal™ System - Uses 4-inch pots held in tiers of PVC pipe, developed for strawberry production.

3) Floating Hydroponics - A simple non-circulating system, especially works well for lettuce.

4) The Verti-Gro™ System - A vertical tower of styrofoam pots filled with soilless media and stacked on each other. Works well for several leafy green vegetables, flowers, and strawberry.

1) Bag Culture - In one Suwannee Valley REC demonstration greenhouse, there are three different crops (tomato, peppers, and lemons) being grown in 6-inch bags of perlite. The tomato and pepper crops include variety trials. The bags are irrigated with emitters at each plant and fertilizer proportioners mix the nutrients with water as the plants are watered. These same perlite bags are used for several different crops on an outside hydroponic plot. There is a strawberry bag culture demonstration evaluating four varieties. Some bags are being fertilized with a controlled-release fertilizer and are irrigated with water only. Other bags are being fertigated with standard hydroponic fertilizer programs. These systems are also used for various other leafy green crops such as lettuces and herbs. Lay-flat bags in the greenhouse are also being used successfully for a cut flower zinnia project.

2) The VerZontal™ System - This system is manufactured by We Gro-Rite (Andrews, NC) and is part of the outdoor hydroponic demonstration plot. This system is constructed with 4-inch PVC pipe with holes cut into the top of the pipe to accommodate 4-inch pots. Each pot is filled with media and has an emitter delivering hydroponic nutrient solution. Initially it was introduced as an alternative system for growing strawberries. It has also been quite effective for growing greens such as lettuce, arugula, and parsley.

3) Floating Hydroponics - Also included on the outdoor hydroponic demonstration plot, are examples of floating hydroponic systems. There are three units, two are mixed with standard hydroponic stock nutrients, the other unit includes a nutrient solution mix with Miracle Gro and magnesium sulfate. These units are inexpensive and easily built for both home gardeners and commercial growers. R. Tyson began demonstrating these units in Seminole County 1 year ago.

4) The Verti-Gro™ System - (Clermont, FL) is also part of the hydroponic demonstrations in the greenhouse and outdoors. This system is made of styrofoam containers stacked in a way that allows plants to be planted at the corners. There are small holes in the bottom of the containers that allow the nutrient to leach through from the top to the bottom of the stack. This system was also introduced as an alternative growing system for strawberries. It has also been found to be very productive for other crops. There are 24 Verti-Gro towers in one demonstration greenhouse at Suwannee Valley REC. Included

(Stall, Vegetarian 99-2)
in the Verti-Gro Trials are: basil in six different medias, basil variety trials (six different varieties), other specialty crops such as: nasturtium, calendula, spinach, mustard, chives, cilantro, arugula, and parsley.

(Breman, Vegetarian 99-2)

Round White Potato Variety Trial Results, 1998, Hastings, FL

Several potato variety trials were conducted in Hastings in 1998. We called one the Round White Trial since we were looking for potatoes that would meet table stock standards. It included white, red, and yellow-fleshed potatoes.

The trial was grown in a field consisting of Elzey fine sand composed of 90-95% sand, <2.5% clay, <5% silt, and <2% organic matter, and pH 6.87. The field was fumigated with 6 gal/A in-the-row (40 in. row spacing) Telone®II (1,3-D) 7 January and 20 lb/acre Tekmil® 15G (aldicarb) was applied at planting 25 February. The crop was fertilized with 1200 lb 14:2:12 at planting and 700 lb of the same fertilizer 24 March. The crop was irrigated as needed using seepage irrigation. Variety treatments were replicated four times in a randomized block design. Plots were single 15 ft long rows with 22 seed pieces weighing 2-2.5 oz planted 8 in. apart in each plot. Lexone® DF was applied at 1.25 lb for weed control 16 March. Pesticides applied during the season included Manzate® 200 DF (mancozeb) 6, 14, 20, 29 April, 5 and 11 May; Bravo Ultrex® 82.5 WDG (chlorothalonil) 18 and 26 May; and Dipel® DF (Bacillus thuringiensis) 29 April, 4,11, and 20 May. Vines were desiccated with Diquat® 29 May. Emergence counts were taken 25,27,30 March, and 2 April. Plant vigor was rated on a 1-10 scale (1=no vigor, 10=most vigor) 1 April. Plant senescence was rated 27 May with 1= vigorous and 10=dead. The crop was harvested, washed, graded, sized, and weighed 6 June. Random samples of 15-20 A-size tubers were taken for specific gravity determinations and tuber quality assessments. Specific gravity was determined using the weight-in-air/weight-in-water method. Appearance of tubers in composited samples of each seedling was rated using the NE184 project rating scheme. Tuber skin color, texture, shape, eye depth, and appearance were rated. For the complete data on this trial and others, request Hastings Research Report HAS 98-4.

Based on data from this trial and observations made in Maine seed plots, the following varieties and Maine seedlings are suggested for additional testing in 1999. Named cultivars: Superior, New Leaf Superior, Kennebec, Katahdin, Snowden, Saginaw Gold, Cosmos, Diamant, Penta, and Atlantic (Diamant has promising tolerance to corky ringspot). Maine seedlings: SC8801-2, AF1424-7, AF1437-1, AF1615-1, AF1753-16, and AF1775-2: Michigan seedling: MSA091-1 (selected for chip potential) and MSA076-2. Although tubers of MSA076-2 were small in 1998, the specific gravity was promising. Yield and specific gravity data are found in Table 1.

Table 1. Round white potato variety trial results, Hastings, FL 1998.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Yield (cw/tA)</th>
<th>Percent size distribution</th>
<th>Specific Gravity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. 1 No. 1<sup>2</sup> Size B 1 7/8- 2 1/2 2 1/2 in. in. >3 in. Culls Gravity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cosmos</td>
<td>418 a<sup>1</sup> 77 3 39 30 8 21 1.066 gh<sup>2</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF1773-1</td>
<td>406 ab 87 3 28 42 17 10 1.061 i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Atlantic</td>
<td>356 a-c 90 4 46 36 8 6 1.077 a-d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snowden</td>
<td>354 a-c 89 8 63 24 2 4 1.075 a-e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSA091-1</td>
<td>342 b-d 87 5 48 28 11 8 1.078 ab</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹Means followed by the same letter do not differ significantly at the 0.05 level.
²The weight of the tubers was taken for size analysis.
³Specific gravity was determined using the weight-in-air/weight-in-water method.
⁴Table 1. Round white potato variety trial results, Hastings, FL 1998.
<table>
<thead>
<tr>
<th>Variety</th>
<th>Mean Separation</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Atlantic</td>
<td>1.079 a</td>
</tr>
<tr>
<td>AF615-1</td>
<td>1.068 gh</td>
</tr>
<tr>
<td>Saginaw Gold</td>
<td>1.073 e</td>
</tr>
<tr>
<td>AF1424-7</td>
<td>1.074 c-e</td>
</tr>
<tr>
<td>AF1753-16</td>
<td>1.072 ef</td>
</tr>
<tr>
<td>Kennebec</td>
<td>1.061 i</td>
</tr>
<tr>
<td>La Chipper</td>
<td>1.068 fg</td>
</tr>
<tr>
<td>B1452-9</td>
<td>1.063 hi</td>
</tr>
<tr>
<td>Red La Soda</td>
<td>1.061 i</td>
</tr>
<tr>
<td>Katahdin</td>
<td>1.063 hi</td>
</tr>
<tr>
<td>B1440-18</td>
<td>1.069 fg</td>
</tr>
<tr>
<td>AF1775-2</td>
<td>1.077 a-d</td>
</tr>
<tr>
<td>Penta</td>
<td>1.064 a-d</td>
</tr>
<tr>
<td>*Atlantic</td>
<td>1.078 a-c</td>
</tr>
<tr>
<td>AF1480-5</td>
<td>1.068 fg</td>
</tr>
<tr>
<td>Sebago</td>
<td>1.064 hi</td>
</tr>
<tr>
<td>MSB107-1</td>
<td>1.062 I</td>
</tr>
<tr>
<td>MSC103-2</td>
<td>1.083 hi</td>
</tr>
<tr>
<td>Superior</td>
<td>1.073 de</td>
</tr>
<tr>
<td>Diamant</td>
<td>1.068 fg</td>
</tr>
<tr>
<td>Superior</td>
<td>1.074 b-e</td>
</tr>
<tr>
<td>B0178-34</td>
<td>1.078 ab</td>
</tr>
<tr>
<td>B1136-29</td>
<td>1.065 a-d</td>
</tr>
<tr>
<td>SC8801-2</td>
<td>1.063 hi</td>
</tr>
<tr>
<td>AF1565-12</td>
<td>1.062 i</td>
</tr>
<tr>
<td>Aziza</td>
<td>1.063 hi</td>
</tr>
<tr>
<td>B1136-1</td>
<td>1.076 e-e</td>
</tr>
<tr>
<td>AF1437-1</td>
<td>1.066 j</td>
</tr>
<tr>
<td>B1136-23</td>
<td>1.068 g</td>
</tr>
<tr>
<td>AF1758-5</td>
<td>1.064 j</td>
</tr>
<tr>
<td>New Leaf Supr</td>
<td>1.068 fg</td>
</tr>
<tr>
<td>MSN076-2</td>
<td>1.075 a-e</td>
</tr>
<tr>
<td>Carola</td>
<td>1.065 g-i</td>
</tr>
</tbody>
</table>

2. No. 1 consists of sizes 1 7/8 to >3 in. of marketable quality.
3. Mean separation in columns by Duncan’s multiple range test, 5% level.
4. Comments: used seepage irrigation, fumigated with Telone II at 6.0 gpa, 20lb/A Temik 15G at planting, plots 15 ft with 22 seed/plot at 8 in., and Lexon DF at 1.25 lb/A before emergence.
Prepared by Extension Vegetable Crops Specialists

Dr. D. J. Cantliffe
Chairman

Dr. T. E. Crocker
Professor

Dr. G. J. Hochmuth
Professor

Dr. D. N. Maynard
Professor

Dr. S. M. Olson
Professor

Dr. S. A. Sargent
Professor

Dr. W. M. Stall
Professor

Mr. J. M. Stephens
Professor

Dr. C. S. Vavrina
Assoc. Professor

Dr. J. M. White
Assoc. Professor
Vegetables Gardening

Cutting Potato Seed - pieces for garden planting

One question I often get at this time of the year relates to the cutting and treating of potato seed-pieces before planting them in the home garden.

Most gardeners are told to buy certified seed potatoes and cut the tubers into 2-ounce pieces. Each piece must have from 1 to 3 eyes for sprouting. What they are not instructed properly on is how then to treat the cut pieces.

To see how the old Florida Cracker farmers planted their potatoes, I went back to an old 1917 Florida Agricultural Experiment Station Bulletin (No. 133) written by A.P. Spencer. Here is his chapter on "Seed Potatoes":

"Growers should exercise special care to get well-matured seed from reliable growers or seedsmen who will guarantee them to be true to name and grown in fields practically free from disease. It is never advisable to plant potatoes usually sold by grocers for table use, as they may be diseased, and not the proper variety. Florida grown seed potatoes are not generally used for winter planting as the spring-grown crop must be kept too long and the fall crop does not mature sufficiently to give reliable seed. Most of the seed used in Florida is grown in Maine. For fall planting, the seed may be taken from the spring-grown Florida crop. It should be kept over summer spread out in a dry place, and by planting only sprouted tubers a fair stand will result."

"The most successful growers prefer medium size tubers for seed, and cut them to two well matured eyes in each piece. Where the tubers are large, and are to be planted in 3 1/2 foot rows, about 12 bushels per acre will be required for seedling. When the seed is to be cut, it is best to do it a few days before planting. Mix a little lime through the pile; it has a preserving effect on the cut surfaces."

Later guides by the USDA explain the need to cut a few days early this way: "One of the main causes of seed-piece decay in the field is lack of proper healing of the cut surfaces. This healing is called suberization, or corking over. Suberization is brought about by exposing seed pieces to high humidity, 60-70 degrees F temperature, and plenty of air. A protective layer of cork cells develops at the cut surfaces, acting as a barrier to soil-borne diseases. Under ideal conditions the protective layer develops within 48 hours. Fresh-cut pieces, when planted in moist, warm soil, usually heal over in the soil before decay sets in: however, since the process is not difficult, it is safer to suberize seed pieces before planting."

Another old bulletin by an Extension potato specialist states for the gardener: "If freshly cut seed is planted, it should be covered immediately to avoid exposure to sunlight and dry air. Planting freshly cut seed in very dry soil favors decay."

A 1975 USDA bulletin (No. 1035) on Precutting Seed Potatoes compares various fungicides for coating the cut surfaces. It reported good results with some of the fungicides.

Summary: my recommendation for home gardeners wanting to plant seed potatoes in Florida is to buy certified seed from reliable sources, then cut them into 2 ounce pieces with 1-3 eyes, at planting time. Plant them right away into a moist soil. It is not necessary to try to cure them, unless they are to be stored for any reason for a long period of several days. Treating with an approved fungicide is optional. I know of some old-timers who still want to treat with lime, and this practice will not hurt, but certainly it is not necessary. Small B size potatoes may be planted whole. Place seed-pieces 12 inches apart in furrows 3-4 inches deep and cover right away.

(Stephens, Vegetarian 99-2)
Cutting Potato Seed - pieces for garden planting

One question I often get at this time of the year relates to the cutting and treating of potato seed-pieces before planting them in the home garden.

Most gardeners are told to buy certified seed potatoes and cut the tubers into 2-ounce pieces. Each piece must have from 1 to 3 eyes for sprouting. What they are not instructed properly on is how then to treat the cut pieces.

To see how the old Florida Cracker farmers planted their potatoes, I went back to an old 1917 Florida Agricultural Experiment Station Bulletin (No. 133) written by A.P. Spencer. Here is his chapter on "Seed Potatoes":

"Growers should exercise special care to get well-matured seed from reliable growers or seedsmen who will guarantee them to be true to name and grown in fields practically free from disease. It is never advisable to plant potatoes usually sold by grocers for table use, as they may be diseased, and not the proper variety.

Florida grown seed potatoes are not generally used for winter planting as the spring-grown crop must be kept too long and the fall crop does not mature sufficiently to give reliable seed. Most of the seed used in Florida is grown in Maine. For fall planting, the seed may be taken from the spring-grown Florida crop. It should be kept over summer spread out in a dry place, and by planting only sprouted tubers a fair stand will result."

"The most successful growers prefer medium size tubers for seed, and cut them to two well matured eyes in each piece. Where the tubers are large, and are to be planted in 3 1/2 foot rows, about 12 bushels per acre will be required for seedling. When the seed is to be cut, it is best to do it a few days before planting. Mix a little lime through the pile; it has a preserving effect on the cut surfaces."

Later guides by the USDA explain the need to cut a few days early this way: "One of the main causes of seed-piece decay in the field is lack of proper healing of the cut surfaces. This healing is called suberization, or corking over. Suberization is brought about by exposing seed pieces to high humidity, 60-70 degrees F temperature, and plenty of air. A protective layer of cork cells develops at the cut surfaces, acting as a barrier to soil-borne diseases. Under ideal conditions the protective layer develops within 48 hours. Fresh-cut pieces, when planted in moist, warm soil, usually heal over in the soil before decay sets in, however, since the process is not difficult, it is safer to suberize seed pieces before planting."

Another old bulletin by an Extension potato specialist states for the gardener: "If freshly cut seed is planted, it should be covered immediately to avoid exposure to sunlight and dry air. Planting freshly cut seed in very dry soil favors decay."

A 1975 USDA bulletin (No. 1035) on Precutting Seed Potatoes compares various fungicides for coating the cut surfaces. It reported good results with some of the fungicides.

Summary: my recommendation for home gardeners wanting to plant seed potatoes in Florida is to buy certified seed from reliable sources, then cut them into 2 ounce pieces with 1-3 eyes, at planting time. Plant them right away into a moist soil. It is not necessary to try to cure them, unless they are to be stored for any reason for a long period of several days. Treating with an approved fungicide is optional. I know of some old-timers who still want to treat with lime, and this practice will not hurt, but certainly it is not necessary. Small B size potatoes may be planted whole. Place seed-pieces 12 inches apart in furrows 3-4 inches deep and cover right away.